Maximizing Algebraic Connectivity via Minimum Degree and Maximum Distance

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tricyclic and Tetracyclic Graphs with Maximum and Minimum Eccentric Connectivity

Let $G$ be a connected graph on $n$ vertices. $G$ is called tricyclic if it has $n + 2$ edges, and tetracyclic if $G$ has exactly $n + 3$ edges. Suppose $mathcal{C}_n$ and $mathcal{D}_n$ denote the set of all tricyclic and tetracyclic $n-$vertex graphs, respectively. The aim of this paper is to calculate the minimum and maximum of eccentric connectivity index in $mathcal{C}_n$ and $mathcal{D}_n...

متن کامل

Degree distance and edge-connectivity

Let G be a finite connected graph. The degree distance D′(G) of G is defined as ∑ {u,v}⊆V (G)(deg u + deg v) dG(u, v), where degw is the degree of vertex w and dG(u, v) denotes the distance between u and v in G. In this paper, we give asymptotically sharp upper bounds on the degree distance in terms of order and edge-connectivity.

متن کامل

Maximizing algebraic connectivity in interconnected networks.

Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with interlayer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these interlayer...

متن کامل

Algebraic distance in algebraic cone metric spaces and its properties

In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.

متن کامل

Erratum: Mean distance and minimum degree

The paper ‘‘Mean Distance and Minimum Degree,’’ by Mekkia Kouider and Peter Winkler, JGT 25#1 (1997), 95–99 mistakenly attributes the computer program GRAFFITI to Fajtlowitz and Waller, instead of just Fajtlowitz. (Our apologies to Siemion Fajtlowitz.) Note also that one of the ‘‘flaws’’ we note for Conjecture 62 (that it was made for graphs regular of degree d, vice graphs of minimum degree d)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2857411